
Procedures and Structured Programming

 FORTRAN has a special mechanism designed to make subtasks easy to develop

and debug independently before building the final program. It is possible to code each

subtask as a separate program unit called an external procedure, and each external

procedure can be compiled, tested, and debugged independently of all of the other

subtasks (procedures) in the program.

 FORTRAN has two kinds of external procedures: subroutines and function

subprograms (or just functions).

Subroutines

 A subroutine is a FORTRAN procedure that is invoked by naming it in a CALL

statement and that receives its input values and returns its results through an argument

list. General form is

 SUBROUTINE subroutine_name (argument_list)

 ….

 (Declaration section)

 ….

 (Execution section)

 ….

 RETURN

 END SUBROUTINE [name]

The argument list contains a list of the variables and/or arrays that are being

passed from the calling program to the subroutine. These variables are called as dummy

arguments, since the subroutine does not actually allocate any memory for them. They

are just placeholders for actual arguments that will be passed from the calling program

unit when the subroutine is invoked.

Any executable program unit may call a subroutine, including another subroutine.

To call a subroutine, the calling program uses a CALL statement. General form of CALL

statement is

 CALL subroutine_name (argument_list)

where the order and type of the actual arguments in the argument list must match the

order and type of the dummy arguments declared in the subroutine.

The Intent Attribute

 Dummy subroutine arguments can have an INTENT attribute associated with

them. The INTENT attribute is associated with the type declaration statement that

declares each dummy argument. The purpose of the INTENT attribute is to tell the

compiler how the programmer intends to use each dummy argument. The attribute can

take one of three forms:

 INTENT (IN) Dummy argument is used only to pass input data to the

 Subroutine.

 INTENT (OUT) Dummy argument is used only to return results to the

 Calling program.

 INTENT (IN OUT) Dummy argument is used both to pass input data to the

 subroutine and to return results to the calling program.

Example:

 SUBROUTINE sub1(input, output)

 IMPLICIT NONE

 REAL, INTENT(IN) :: input

 REAL, INTENT(OUT) :: output

 output = 2. * input

 input = -1. ! This line is a error !

 END SUBROUTINE

Always declare the intent of every dummy argument in every procedure.

FORTRAN provides a way to guarantee that local variables and arrays are saved

unchanged between calls to procedure. This is the SAVE attribute. For example, a local

variable sums could be declared with the SAVE attribute as

 REAL, SAVE :: sums

The format of SAVE statement is

 SAVE :: var1, var2, …

Or simply

 SAVE

If a procedure requires that the value of a local variable not change between successive

invocations of the procedure, include the SAVE attribute in the variable’s type

declaration statement, include the variable in a SAVE statement, or initialize the variable

in its type declaration statement. If you do so, the subroutine will work correctly with

some processors but will fail with others.

Example 1 of a module:

 MODULE test

 IMPLICIT NONE

 SAVE

 INTEGER, PARAMETER :: num_vals = 5

 REAL, DIMENSION(num_vals) :: values

 END MODULE test

 PROGRAM test_module

 USE test

 IMPLICIT NONE

 REAL, PARAMETER :: pi = 3.141592 ! Pi

 Values = pi * (/ 1., 2., 3., 4., 5. /)

 CALL sub1 ! Call subroutine

 END PROGRAM

 SUBROUTINE sub1

 USE test

 IMPLICIT NONE

 WRITE (*,*) values

 END SUBROUTINE sub1

The contents of module test are being shared between the main program and subroutine

sub1.

You may use a module to pass large amounts of data between procedures within a

program. If you do so, always include the SAVE statement within the module to ensure

that the contents of the module remain unchanged between uses. To access the data in a

particular program unit, include a USE statement as the first noncomment statement

after the PROGRAM, SUBROUTINE, or FUNCTION statement within the program unit.

Example 2,

 MODULE my_subs

 IMPLICIT NONE

 (Declare shared data here)

 CONTAINS

 SUBROUTINE sub1(a, b, c, x, error)

 IMPLICIT NONE

 REAL, DIMENSION(3), INTENT(IN) :: a

 REAL, INTENT (IN) :: b,c

 REAL, INTENT (OUT) :: x

 LOGICAL, INTENT (OUT) :: error

 ….

 END SUBROUTINE sub1

 END MODULE my_subs

 PROGRAM main_prog

 USE my_subs

 IMPLICIT NONE

 ….

 CALL sub1(a, b, c, x, error)

 ….

 END PROGRAM main_prog

FORTRAN FUNCTIONS

 A FORTRAN function is a procedure whose result is a single number, logical

value, character string, or array. Two types of FORTRAN functions are intrinsic

functions and user-defined functions (or function subprograms)

 General form of FORTRAN function is

 FUNCTION name (argument_list)

 ….

 (Declaration section must declare type of name)

 …..

 (Execution section)

 ….

 name = expr

 RETURN

 END FUNCTION [name]

The function must begin with FUNCTION statement and end with END FUNCTION

statement. The name of the function may be up to 31 alphabetic, numeric, and underscore

characters long, but the first letter must be alphabetic. The name must be specified in the

FUNCTION statement and is optional on the END FUNCTION statement.

 A function is invoked by naming it in an expression. When a function is invoked,

execution begins at the top of the function and ends when either a RETURN statement or

the END FUNCTION statement is reached. RETURN statement is rarely used. If

IMPLICIT NONE is used, the type of the function must be declared both in the function

procedure and in the calling programs. If IMPLICIT NONE is not used, the default type

of the function will follow the standard rules of FORTRAN unless they are overridden by

a type declaration statement. The type declaration of a user defined FORTRAN function

can take one of two equivalent forms:

 INTEGER FUNCTION my_function (i, j)

Or

 FUNCTION my_function (i, j)

 INTEGER :: my_function

Be sure to declare the type of any user-defined functions both in the function itself and in

any routines that call the function.

